WebFederated Learning (FL) is a collaborative machine learning approach allowing participants to jointly train a model without having to share their private, potentially sensitive local datasets with others. WebSep 1, 2024 · FLAME: Taming Backdoors in Federated Learning. Proceedings of the 31st USENIX Security Symposium, Security 2024 2024 Conference paper Author. SOURCE-WORK-ID: 222ce18e-ee3e-4ebd-9e4e-e0460bd3e0c4. EID: 2-s2.0-85133365471. WOSUID: 000855237502002. Part of ISBN: 9781939133311 ...
A Knowledge Distillation-Based Backdoor Attack in Federated Learning ...
WebSep 17, 2024 · FLAME: Differentially Private Federated Learning in the Shuffle Model Ruixuan Liu, Yang Cao, Hong Chen, Ruoyang Guo, Masatoshi Yoshikawa Federated Learning (FL) is a promising machine learning paradigm that enables the analyzer to train a model without collecting users' raw data. WebJan 12, 2024 · Our evaluation of FLAME on several datasets stemming from application areas including image classification, word prediction, and IoT intrusion detection … grape ware
FLAME: Taming Backdoors in Federated Learning - IACR
WebOur evaluation of FLAME on several datasets stemming from application areas including image classification, word prediction, and IoT intrusion detection demonstrates that … WebApr 10, 2024 · 【论文阅读笔记】PPA: Preference Profiling Attack Against Federated Learning 【论文阅读笔记】FLAME: Taming Backdoors in Federated Learning 【论文阅读笔记】Efficient and Secure Federated Learning With … WebJul 2, 2024 · An attacker selected in a single round of federated learning can cause the global model to immediately reach 100% accuracy on the backdoor task. We evaluate the attack under different assumptions for the standard federated-learning tasks and show that it greatly outperforms data poisoning. chipset phone